Problem
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
n的欧拉函数表示小于n的数中和n互质的数。
定义n为正整数,ti为n唯一分解的质数基。
利用n的欧拉函数为n*所有的(ti-1)/ti来求。
第一种方法为sqrt(n)的时间单个求。
第二种方法利用质数筛,如果循环到一个数,其数组没被变过,说明这个数是质数,可以往后修改其他数。
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次拿的数量最少1个,最多不超过对手上一次拿的数量的2倍(A第1次拿时要求不能全拿走)。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 3。A只能拿1颗或2颗,所以B可以拿到最后1颗石子。
1 | #include<iostream> |
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 3。A只能拿1颗或2颗,所以B可以拿到最后1颗石子。(输入的N可能为大数)